
09/20/04 1/38

STICKY WORMS OR:

RESPONDING TO A DISTRIBUTED
DENIAL OF SERVICE ATTACK WITH A

SELECTIVE TARPIT

JORDAN K. WIENS

A SANS GCIA CERTIFIED INCIDENT HANDLER
PRACTICAL ASSIGNMENT v4.0

SUBMITTED SEPTEMBER 20, 2004

09/20/04 2/38

Acknowledgements
Many thanks to my wife who not only challenges me and loves me, but more
specifically is probably the only reason I even finished this paper. I will always
admire your diligence and intelligence. I love you more each day, and don’t mind
sounding sappy in public professing it.

Kathy, you and the rest of the CNS staff have made my work experience these
last four years an ethical hacker’s dream. I tell anyone who asks that you do all
the things a boss should do, and none of the things they shouldn’t. Well, none
besides the occasional overzealous edit. (I wonder if that will survive the edits)

Thanks to Chuck Logan for all your work on Sticky. This whole concept probably
could not have been made at all, and certainly could not have been adapted as
quickly without your effort.

Thanks to Tom Liston for LaBrea as well as your willingness to help throughout
the process, and Joe Stewart for the idea of using the tarpit to counteract the
DDOS, as well as the invaluable analysis on this and many other pieces of
malware.

Thanks to the SANS Malware list which has been a great resource for advice,
techniques, and samples.

09/20/04 3/38

Abstract
Some variants of the Netsky worm targeted a distributed denial of service
(DDOS) attack at a web server on the University of Florida (UF) network. The
University of Florida Incident Response Team (UFIRT) was able to prepare a
unique defensive measure against the attack that may prove useful in defending
other networks from similar attacks. This paper will detail the Netsky worm in
general, the specifics of the three variants that attacked the University of Florida,
and will explain how a selective tarpit could drastically reduce the impact of some
denial of service attacks.

09/20/04 4/38

TABLE OF CONTENTS
INTRODUCTION.. 5

THE WORM ... 5
Terminology ... 5
History .. 6
Variants .. 7
Virus Wars.. 7
Operating Systems .. 8
Protocols .. 9

SMTP.. 9
HTTP... 10
DNS .. 10

Successful Infection.. 10
Backdoor... 11

THE ATTACK .. 12
Generic DDOS.. 12
Specifics of Netsky HTTP DDOS .. 12
Network Infrastructure .. 13
Attack Signatures .. 13

Infected Hosts ... 13
DDOS Signatures ... 14

DDOS Protections.. 14

INCIDENT HANDLING... 15
Summary .. 16
Identification .. 16
Preparation... 17
Containment... 19
Eradication ... 22
Recovery... 22
Lessons Learned ... 23

APPENDIX A – FIGURES, TABLES AND CHARTS... 27
Table 1: Variants .. 27
Figure 1: Timeline .. 30
Figure 2: Network Topology ... 31
Figure 3: Tarpit Bandwidth ... 32
Figure 4: Netsky Exception... 33

APPENDIX B – CODE AND DATA SAMPLES ... 34
Sample 1: Sample SMTP transaction... 34
Sample 2: Netsky HTTP DDOS Requests .. 35
Sample 3: Tard.c .. 35
Sample 4: Stickypit scripts ... 38

09/20/04 5/38

Introduction

The University of Florida (UF) Incident Response Team (UFIRT) is familiar with
the impact of viruses and worms on a large network. The Netsky worm however,
impacted UF in a strikingly different way. For a still unknown reason (see Virus
Wars for speculation), Netsky.x, Netsky.y, and Netsky.z performed a distributed
denial of service (DDOS) attack on three educational web servers. One of them
was www.medinfo.ufl.edu, a web server maintained by the College of Medicine at
UF.

Fortunately, the DDOS attack was programmed to begin a week after the
variants were released, giving the worm time to amass a larger set of infected
hosts, but also giving UFIRT more time to prepare.

During the preparation stage of incident handling, UFIRT queried various mailing
lists for more information. On one such list, Joe Stewart from LURHQ proposed
an intriguing defensive mechanism. He suggested a selective tarpit (or stickypit,
as UFIRT named it) to trap the DDOS attacks of the worms. This would not only
help protect the UF targeted server by decreasing the frequency of attacks, but
would also slow down the rate of attack against other servers that were
simultaneously targeted.

During the attack problems were discovered with the stickypit design. However,
these problems only impacted a small population of legitimate visitors to the
www.medinfo.ufl.edu web site, and only for short periods of time.

There are many other potential uses for a stickypit and hopefully the concept will
be adapted and utilized by others to protect their networks as well.

Note: While most GCIH assignments are sanitized to hide the organizations
involved in the incident, it is already public knowledge that the Netsky worm
attacked a server in the University network space. Thus, this paper will attempt
to discuss already public information in detail; however, some internal details
(such as specific incident response procedures and network topology details)
must be obfuscated or omitted since the organization cannot help but be
identified.

The Worm

Terminology
There are some distinctions in terminology that are important to clarify. Virus is
usually defined to mean a piece of code that infects other programs or files and
requires the user to transmit the infected content to other machines where it
repeats the process. A worm is different from a virus in that it actively spreads
itself. This may be by sending email, attempting exploits, or using other
methods.

09/20/04 6/38

The terms worm and virus are often conflated. For example, Netsky is typically
referred to as a virus since most variants require some user action. It is
categorized as a virus despite the fact that it emails itself instead of infecting an
existing file as traditional viruses do. For that reason, while worm is usually used
in this paper, virus and worm are often used interchangeably. Categorization is
more difficult because for many years now such programs have not been easily
classified as either a virus or a worm. For example, the Nimda virus exhibits
behaviors of both a virus and a worm. It use mass mailing techniques more
commonly ascribed to viruses and IIS exploits more commonly ascribed to
worms. Most recent worms and viruses also include backdoors which are
another example of malicious program functionality converging. The generic
term malware is used to describe the entire category of malicious software such
as worms, viruses, adware, spyware, trojans, backdoors, bots (short for robots),
and others.

History
The original Netsky worm was discovered on February 16th, 2004, and was
considered by most Anti Virus (AV) vendors to be a low priority threat. It did not
exhibit any particularly new or powerful features to help it spread. The primary
distribution method was via email, and the initial infection count was estimated to
be very small. The second distribution method was to copy itself to various
directories and mapped drives using a variety of appealing names. It could then
be executed when discovered on both Peer-to-Peer (P2P) networks and over file
shares.

Multiple variants followed in rapid succession. From February 16th until at least
May 2nd, more than 20 different variants were released; averaging a release
every three or four days.

The distribution method using file shares and P2P networks was apparently not
as successful as the author would have liked and this propagation method was
dropped in the D variant, although it reappeared in later variants. Other features
appeared and disappeared randomly. For example, some variants played a
random series of tones on the speaker of the infected machine during certain
dates. There seemed to be a general amount of experimenting as features were
tested and discarded.

Messages were transmitted in strings embedded in the worms to the AV
community, as well as to the authors of other worms with whom the Netsky
author was feuding. The initial message claimed authorship under the name
“Team Skynet” (likely a reference to the Terminator series of movies in which a
computer network called Skynet supposedly takes over the world and engages in
a battle with mankind).

09/20/04 7/38

There are definite trends and styles to the variants. There appear to be multiple
strains that are likely built upon the same source code, yet are fairly different in
terms of features, packing methods, types of comments, etc. In fact, in one
variant, strings embedded in the worm thank the original Netsky team for the
source code and announce that a new group called NetDy would create new
variants. Additionally, while the original Netsky strain was quite disparaging in its
comments about the Bagle worm for having a backdoor, later variants of Netsky
would have backdoors of their own.

The Q variant was the first to exhibit denial of service capabilities. A variety of
P2P websites were attacked, and though specific targets changed, the P2P trend
continued until the X, Y, and Z variants that attacked educational web servers.
Shortly after these three variants were released, the Sasser worm was
discovered, and a later Netsky variant contained a message that claimed credit
for the Sasser worm as well. Expert analysis of the source code [1,2] supports
the claim.

Over the next few weeks, additional Sasser and Netsky variants were released,
however, they dwindled off after the arrest by German authorities of a man they
believed to be the author [3,4]. Whether he was the author of all Netsky and
Sasser variants, or whether other writers simply moved on after his arrest is
unknown.

Variants
Table 1: Variants includes highlights of each of the Netsky variants, as well as
links to references for each variant in major anti-virus databases. The following
vendor databases were used as references: McAfee, Symantec, Trend Micro,
Panda Software, and F-Secure. Due to nomenclature differences, the Kaspersky
virus database was not used as a reference, despite their technical and concise
analyses. At some point, the variant names of most other AV vendors and
Kaspersky’s became out of sync, and for that reason only the above databases
were used.

Virus Wars
There are a number of common trends and attitudes in the world of malware
writers, as well as some recent differences. For many years, the sole motivation
(that most would admit) for a virus writer was the pure challenge of technical
learning and pushing the limits of systems. These idealists often claimed to be
espousing the ideal aspects of hacking [5], despite the obvious negative impact
malware has when released.

In recent years, however, there has been a growing trend of malware for profit.
From adware that is targeted at infecting user machines and forcing them to view
advertisements, to backdoors that monitor and steal credit card information and

09/20/04 8/38

other sensitive data, malware has very serious financial considerations that go
beyond the well known impact of cleanup alone.

There have even been suggestions that many malware for profit operations are
being funded or run by the Russian mafia [6,7], and other organized crime
syndicates [8]. The commercialization of malware writing has resulted in a
schism between the newer profiteers and idealists who disdain those with less
‘pure’ motivations.

The Bagle and Mydoom worms are believed to be used in Spam rings and other
profiteering groups. Backdoors built into these worms are used to control
infected hosts for profit.

The Netsky worm appears to have originated from one of the idealistic malware
writers. Not only are vitriolic comments made back and forth between the Netsky
author and the authors of Bagle and Mydoom, but many Netsky variants actively
attack other worms installed on infected hosts. Typically, this is done by
removing known registry keys used to start the rival worm so that, after the next
reboot, only the Netsky worm will run on the infected host.

It’s from that perspective that many of the comments in the Netsky program code
should be taken into context. There are references to Skynet AV as if it was a
legitimate anti-virus product, and the Skynet team apparently feels as if they are
doing less harm than authors of other worms.

Despite the supposedly wholesome intentions, Netsky causes as many problems
as it fixes. A Netsky infection is still an infection, and must be handled
accordingly.

While the motivation for Netsky to target www.medinfo.ufl.edu is still unknown,
UFIRT speculated that it might have been as a result of this feud. If the medinfo
server was involved (or perceived to be involved) somehow, it might have been
targeted for that reason. This was taken into account during the incident
handling process.

Operating Systems
Since Netsky does not exploit any technical flaws besides user willingness to
open attachments that shouldn’t be opened, there are no specific Windows
operating systems which are more or less vulnerable to Netsky. The worm was
written in Visual C++ and compiled for Windows operating systems and is not
portable to other operating systems without some other emulation layer. Any
Windows operating system from Windows 95 on is therefore potentially
vulnerable.

It should be noted that the Windows XP Service Pack 2 [9] has some mitigating
effects on Netsky. None of the memory protections inhibit infection since Netsky

09/20/04 9/38

is essentially a normal user program not taking advantage of any exploits or
buffer overflows. Netsky does, however, generate large amounts of network
activity in a short period of time. Service Pack 2 includes limits to the rate at
which network connections can be opened [10]. Thus, while a host running
Service Pack 2 could become infected, it would neither spread as rapidly, nor
attack as effectively.

Protocols

SMTP
As an email virus, Netsky makes heavy use of SMTP not only by using its own
built in SMTP client to send email directly to mail servers, but also by taking
advantage of the MIME encoding extensions to encode the program as an
attachment in a portable fashion.

SMTP servers function by listening on TCP port 25 for connections from clients
to receive mail and are based on RFC821 [11]. A basic SMTP transaction
consists of a few simple commands. In fact, mail can be sent using SMTP with
nothing more than a telnet session since the protocol is human readable. A short
SMTP transaction would occur on port 25/TCP and would appear as follows
(server responses in orange, ‘client’ in blue – the SMTP client may be another
server):

220 ser ver - name SMTP Mai l - ser ver - pr ogr am; Dat e
HELO cl i ent - domai n- name
250- ser ver - name Hel l o cl i ent - domai n- name [I P]
MAI L FROM: <f r om@cl i ent - domai n- name>
250 2. 1. 0 <f r om@cl i ent - domai n- name>… Sender ok
RCPT TO: <dest i nat i on@ser ver - name>…
250 2. 1. 6 <dest i nat i on@ser ver - name>… Reci pi ent ok
DATA
354 Ent er mai l , end wi t h " . " On a l i ne by i t sel f
Fr om: f r om@cl i ent - domai n- name
To: dest i nat i on@ser ver - name
Subj ect : Hi

Test i ng SMTP!
.
250 2. 0. 0 msg- i d Message accept ed f or del i ver y
QUI T
221 2. 0. 0 ser ver - name cl osi ng connect i on

Additionally, there are extensions to the SMTP protocol that allow for a slightly
different transaction style. These are derived from RFC2821 [12], and include
the EHLO syntax used in the Netsky sample communication documented later.

The MIME specification was created to allow the transport of binary files within
the SMTP protocol which only allows for printable ASCII characters. The MIME
format is used by Netsky to encode a copy of itself in text that can be sent via
SMTP and decoded into a binary on the other end. More information is available
on MIME in RFC2045 [13], and some ancillary specifications are included in
RFC2112 [2112].

09/20/04 10/38

HTTP
HTTP is the transport protocol of the World Wide Web and is built on TCP.
Interestingly, as firewalls and other security devices restrict and lock down
previously open ports, more and more applications are moving inside of HTTP.
This means that more exploits are occurring higher in the protocol stack and that
security devices must learn another set of protocols built on top of HTTP to
detect attacks. This can be seen in the emergence of new protocols using HTTP
tunneling such as SOAP. Netsky targets web servers with a flood of HTTP
requests to affect a DDOS. Fortunately, Netsky doesn’t use anything as complex
as SOAP for the DDOS. In fact, Netsky does not even construct a properly
formatted HTTP request according to RFC2616 [15]. This makes it rather easy
to identify the HTTP requests of the worm as will be demonstrated later.

DNS
Since the domain names that Netsky attacks and the email addresses that it
emails are not IP addresses, they must first be converted via a DNS query.
Netsky uses the built in resolver libraries of Windows to try to resolve domain
names and MX records (records that point to the appropriate mail server for a
domain) first, however it does have its own built in DNS routines in the event that
the local DNS resolver is misconfigured but the host still has network access.
DNS packets are UDP packets sent to port 53 on the server. The DNS
specifications (RFC3658 [16]) do include TCP, however that is only for zone
transfers. Normal client interactions are all via UDP.

Relevant DNS queries mentioned in this paper include CNAME, A, and MX. ‘A’
records are the most basic DNS record, translating a domain name into an IP
address. CNAMES are like shortcuts to ‘A’ records. They allow one domain
name to be pointed to another domain name. To resolve the first domain name,
an A record query is sent, a CNAME response is received, and an A record
query is sent for the second domain name, and so on until an A record is
received. MX records are used for mail. An MX query for a domain name
returns the domain name of the host that handles mail for the original request.

Successful Infection
A successful infection from one host to another occurs in the following process.
First an email address is found on the hard drive of the infected machine inside
files containing the following extensions: adb, asp, cfg, cgi, dbx, dhtm, doc, eml,
htm, html, jsp, mbx, mdx, mht, mmf, msg, nch, ods, oft, php, pl, ppt, rtf, sht, shtm,
stm, tbb, txt, uin, vbs, wab, wsh, xls and xml.

The appropriate mail server for that address is found via an MX query to the
configured DNS server. Since Netsky first tries to use the local system resolver,
it’s possible to use the Windows ‘hosts’ file
(%systemroot%\system32\drivers\etc\hosts on Windows XP and 2000, and
%systemroot%\hosts on Windows 98 and ME) to force the worm to resolve the

09/20/04 11/38

addresses to be attacked. It’s unfortunately not possible to use the hosts file to
force the worm to send emails elsewhere as MX queries do not use the local
hosts file as a reference.

Once email addresses have been harvested from those files, the virus uses its
own built in SMTP engine to send them an infected email (Sample 1: Sample
SMTP transaction). In the X variant, the email is targeted to specific languages
(German, Finnish, French, Italian, Norwegian, Polish, Portuguese, Swedish, and
Turkish). The virus attempts to match the top level domain extension on the
email address and if it matches the domains of one of the above countries, it
attempts to send a language specific message. In the case of the Turkish
message, the email is actually going to a domain name in the Caribbean (tc)
instead of Turkey (tr). The Y and Z variants don’t try to guess languages and are
in English only.

The payload is a very simple note about a “document”, “notice”, or similar terms
in the X and Z variants, while the Y variant uses a slightly more clever approach
of trying to appear to be a bounce request from a mail server.

None of these variants use the P2P or local file share spreading mechanisms
that were used in some of the other Netsky variants. The executable file name of
the X and Y is “FirewallSvr.exe”. The file is created in the %systemroot%
directory, and registry entry is created named FirewallSvr that starts the worm
when Windows loads. The Z variant uses the executable file name
“Jammer2nd.exe” and Jammer2nd as the registry entry name.

From there a new host is infected when a user checks their email [17] and opens
the attachment and the cycle repeats.

Backdoor
The Y and Z variants also have backdoors that can be used to upload and run
additional code. TCP port 82 is opened by the Y variant, and Z listens on TCP
port 665. Data sent to that port is saved into a file and executed. While it is not
legal, advisable, or even within the realm of common sense, some individuals
have suggested automated hack-back systems that could ‘clean’ worms via
these backdoors. In fact, that is similar to what the Netsky authors claim to be
attempting. The system would detect that an attacking host (whether the attack
was an infected email or a DDOS event) was infected with Netsky, then connect
back to the attacking host and attempt to upload cleansing code.

It is possible to use the backdoor methods on machines which are under the
legal authority of an administrator. For example, if a Netsky outbreak were to
occur on a large scale network which had a CIRT legally able to remotely
manage those machines, but lacking the technical resources (each department
has different password sets, de-centralized day-to-day administration of
individual hosts), they could develop a tool to scan for machines with the

09/20/04 12/38

backdoor ports open on their network, and attempt to upload various cleaning
tools to remove the worm. Unfortunately, even that approach is probably ill-
advised. There is no substitute for proper management of hosts via legitimate
methods, and being able to push out virus updates and other patches and fixes
through normal channels. In an emergency situation, however, such an action
could be considered as a possible response.

The Attack

Generic DDOS
A denial of service attack is an attack in which service is denied. The addition of
distributed does exactly what it should to the definition: denies service in an
attack originating from a variety of distributed locations. There are a variety of
non-distributed denial of service attacks, such as carefully formed packets that
result in resources being exhausted through clever manipulation of data.
However, most DDOS attacks come in two flavors. The first, like Netsky, is the
result of a worm that is pre-seeded with an attack destination and time schedule.
The second is a collection of infected machines (bots, worms, or otherwise)
remote controlled to initiate a DDOS against a host.

The mechanism used by the individual hosts participating in a DDOS attack can
vary, however they typically operate on the same principle. Overwhelm the
target with so much information that it cannot respond to legitimate queries.
More efficient DDOS attacks require the target to do more work in response to
the attackers. An HTTP request, for example, can be one small packet, requiring
the target web server to return a much larger web page in response. With
enough bandwidth, even the simplest attack is debilitating. For example, a SYN
flood is a stream of TCP SYN packets to the target. There are a variety of
tweaks [18] to allow targeted hosts to not track SYN packets in their network
stack and thus save on computation necessary to maintain state on SYN
packets. However, even with such protections, if the bandwidth taken up by the
SYN flood can exceed some large percentage of the available bandwidth to the
target, then legitimate packets will be unable to reach the target, and a denial of
service will still be affected.

Specifics of Netsky HTTP DDOS
The DDOS behavior of the Netsky variants activates during a specific date range
(Figure 1: Timeline). Much of this analysis was from Joe Stewart in
correspondence to a closed security list. His research is summarized here with
his permission. Additionally, each of the three variants was analyzed in a
VMWare sandbox for verification. A FreeBSD server was configured to fake
DNS responses to the worm, and Ethereal was used to sniff the traffic. While the
VMWare results did not correspond to the description below, the description as
follows is the designed behavior of the DDOS code in Netsky. The DDOS code
first decrypts the stored target server domain names:

09/20/04 13/38

ooo. nqcuk. uf (www. educa. ch)
ooo. anqbmvw. cvh. nqc (www. medi nf o. uf l . edu)
ooo. mbebz. qn (www. ni bi s. de)

Then each domain name is resolved into an IP address. Fifty threads are
spawned, each thread choosing one target at random. An HTTP connection
(TCP to port 80) is made to the target server and the following text (without the
parenthetical remark) is sent:

GET / HTTP/ 1. 1
Host : www. medi nf o. uf l . edu

(not e t he ext r a bl ank l i ne at t he end)

The thread then sleeps for 250 milliseconds, repeats the HTTP request, and
cycles through the last two steps until the worm exits.

While this would nominally result in only 200 requests per second, when the
attack is multiplied that by hundreds of thousands of infected machines, it
becomes quite powerful indeed.

Network Infrastructure
See Figure 2: Network Topology for a graphical overview of the network. An
infected user begins to DDOS and follows the steps described in the specifics of
the Netsky DDOS above. While the attack never reached the level where it
disrupted service to the UF campus as a whole, if the DDOS target had a smaller
network connection, it have been disrupted in a path from the inbound
connection to UF to the host receiving the attack. Ignore the server called Sticky
for now. It is introduced in the incident handling section.

Attack Signatures

Infected Hosts
The Netsky worms are identifiable by a number of methods. The first line of
defense for most viruses is AV software. If current updates were installed on
attacked hosts or mail servers, the virus could have been detected and stopped
that way. For specific version and update information, see the AV database in
Appendix A.

Since Y and Z had backdoors on infrequently used low-port numbers, it would be
useful to use flow-analysis tools to detect TCP traffic to port 665 and 82 for
possible abuse of the backdoors. Also, it would be easy to use a port scanning
tool such as Nmap to port scan for machines with either 665 or 82 open, and
further investigate those hosts as potential infections.

09/20/04 14/38

While it is unlikely that many infected clients on networks would have used the
hard coded DNS servers instead of their default local DNS servers, DNS traffic to
the following IPs could be used as an additional detection method:

145. 253. 2. 171
193. 141. 40. 42
193. 189. 244. 205
193. 193. 144. 12
193. 193. 158. 10
194. 25. 2. 129
194. 25. 2. 130
194. 25. 2. 131

194. 25. 2. 132
194. 25. 2. 133
194. 25. 2. 134
195. 185. 185. 195
195. 20. 224. 234
212. 185. 252. 136
212. 185. 252. 73
212. 185. 253. 70

212. 44. 160. 8
212. 7. 128. 162
212. 7. 128. 165
213. 191. 74. 19
217. 5. 97. 137
151. 189. 13. 35

DDOS Signatures
If a host was a DDOS target of the Netsky virus and had not received prior
warning, the first alert would likely be from high traffic patterns to a website that
was not normally as loaded. Examining the web server logs would reveal a large
number of log entries such as:

aa. bb. cc. dd - - [03/ May/ 2004: 21: 02: 21 - 0400] " GET / HTTP/ 1. 1" 200 3333 " - " " - "
aa. bb. cc. dd - - [03/ May/ 2004: 21: 02: 21 - 0400] " GET / HTTP/ 1. 1" 200 3333 " - " " - "
aa. bb. cc. dd - - [03/ May/ 2004: 21: 02: 21 - 0400] " GET / HTTP/ 1. 1" 200 3333 " - " " - "

In this case, aa.bb.cc.dd is the IP address of one of the attacking hosts. Many
repeated lines would be indicative of a DDOS, or at least a poorly configured
client.

Of particular note are the last two fields of the requests above. Those “-“ fields
serve in the place of the HTTP Referer and the User-agent field. In this case,
both of those fields being empty is highly suspicious. Requests may come to a
web server with no referer field specified either because the link was typed, came
from a bookmark, or some software or proxy stripped the field. It’s unlikely to
have a blank User-agent field and such behavior is very indicative of some sort of
untoward activity.

The Netsky HTTP request (Sample 2: Netsky HTTP DDOS Requests) contains
the bare minimum of information necessary to retrieve the default webpage for
the domain name. The lack of any other HTTP fields is a telltale sign that the
activity is not legitimate.

Depending on the security architecture of the targeted site, other systems may
notice the attack before the web server administrator. It is possible that various
Intrusion Prevention Products, QOS or bandwidth monitoring systems, or even
user complaints could be the first indication that the attack is under way. UF was
certainly lucky in the amount of warning they had for this incident.

DDOS Protections
The following are some suggested responses to typical DDOS attacks:

� Upstream block: The worst DDOS attacks threaten much more than a
single host. Whatever they are targeted at, any time a DDOS

09/20/04 15/38

generates enough traffic to fill up available bandwidth to an
organization, any traffic to or from that site could potentially be
impeded. In such cases, it is extremely important to have good
communication with upstream bandwidth providers. Many DDOS
attacks can only be stopped by proper communication with the
upstream provider and asking them to place blocks that will prevent the
malicious traffic from entering the connection that is currently flooded
with traffic.

� DNS black hole: When a DDOS is coordinated in advance via domain

names, the domain name can be changed so its IP address is either a
loop back IP address (and thus the host attacks itself), or some other
non-routable address. This does deny legitimate service to the same
domain name as well and is typically a last resort.

� Move IPs: In cases where a prearranged DDOS is targeted at a

specific IP instead of a domain name such as in the Code Red worm
[19] attacking the White House, the domain name can be changed to a
new IP address, and the original IP address traffic can be blocked at
the upstream provider without any effects to the legitimate user
population.

� Security Products: A number of firewalls and Intrusion Prevention

Systems (IPS) include the capability to either automatically or manually
block certain types of traffic. The specific abilities depend on the
product, but some are powerful enough to detect malformed HTTP
packets and disallow only those packets; so even legitimate traffic from
worm infected hosts would still be able to reach the target organization
even though the attacks from the same hosts were not.

� Black Hole Routing: Black Hole Routing is a technique [20] used to

send packets to a null interface (essentially through them away) and
can be used in conjunction with router ACLs to block hosts within
routers on the own organizations network. The connection to the
upstream is still susceptible, but for DDOS attacks in which that
bandwidth is not overwhelmed, it is likely easier to make changes via
Black Hole Routing or ACLs.

Incident Handling
There are two distinct perspectives of incident handling in the case of Netsky.
There is incident handling from the perspective of those infected with the virus,
and incident handling from the perspective of the DDOS targets. UFIRT was
fortunate to only have to worry about one of these perspectives as no infected
hosts were found on the UF network. IDS signatures were created to detect the
http traffic (Sample 2: Netsky HTTP DDOS Requests) used in the denial of

09/20/04 16/38

service attack coming from internal UF networks. No such attacks were
detected.

Incident handling for infections is fairly straightforward as Netsky behaves
similarly to most modern email worms. For more information on incident
handling of worm and virus outbreaks, see the following references: [21, 22, 23]

Summary
Most organizations will not be the target of a worm initiated DDOS such as that
experienced by UF during the Netsky attack. Those that do, however, will face a
rare challenge. The likelihood of such attacks is increasing as worms are
becoming more common. Increased code sharing between virus and worm
authors has resulted in more individuals capable of creating and abusing groups
of compromised hosts used in such attacks.

The six steps of Incident Handling (Preparation, Identification, Containment,
Eradication, Recovery, and Lessons Learned) [24] must be modified slightly
when dealing with an incident such as a received DDOS. For example, while
Identification of an incident is normally a more subtle task, when targeted by a
DDOS, it’s a much more obvious process. This is due to the very nature of a
DDOS; it denies services that would otherwise be available.

For an overview of the incident, Figure 1: Timeline outlines the timeline of the
incident through the various phases, as well as the DDOS attacks time frame.

Identification
Identification is usually the second step of Incident Handling. However, initial
identification that a threat existed was received by UFIRT in the form of an email
forwarded by the administrator of the www.medinfo.ufl.edu server around noon,
Tuesday April 20th. The administrator was notified of the pending attack by the
administrator at one of the other two targeted servers. UFIRT uses
abuse@ufl.edu as the central point of contact for abuse handling on campus, per
RFC2142 [25]. Thus, the administrator of the server in question was able to
easily contact UFIRT and begin the Incident Handling Process.

Notification should be considered an ongoing process throughout incident
handling. UFIRT gathered a list of email addresses for all the relevant parties
who would be involved in the incident (the server administrators, network
administrators, appropriate management contacts in multiple departments, the
DNS administrator) and used email and phone calls as the primary methods for
communication.

After the initial information was received and while the appropriate parties were
gathered, the investigation began. First, independent verification was found
through research on various anti-virus vendor databases. Second, additional
information was sought on the specifics of the DDOS method on a closed

09/20/04 17/38

security mailing list. The information that was gathered indicated that the threat
was real and growing. By Wednesday the 21st, two additional variants had been
released and analyzed.

Preparation
After the initial information was processed, the response team gathered and
response options were considered. One fortunate aspect of the situation helped
UFIRT in planning a response to the DDOS. Two names were listed in the DNS
configuration for the UF target: www.medinfo.ufl.edu and medinfo.ufl.edu. The A
record was medinfo.ufl.edu and www.medinfo.ufl.edu was a CNAME or alias.
Since the worm was programmed to attack www.medinfo.ufl.edu, removing that
domain name from DNS would prevent the worm from resolving an IP address
for the target, while legitimate users could simply use medinfo.ufl.edu without any
interruption of service.

Additionally, most of the primary users for the domain were on campus, and
could be instructed to change their bookmarks to point to the new domain in a
relatively short period of time. Thus, the impact to the primary user population
could be minimized.

There were unfortunately two faults in this plan. The first was that it was known
that the virus had a hard-coded list of name servers in its configuration, and it
was unknown if those could be used by the attacker to force the old DNS data
and still attack the host. The second problem was some traffic to the target
server originated from search engine requests, which often are pointing to the
targeted domain name. Another plan would have to be implemented to maintain
service to that population.

To resolve that issue, the plan was modified to include a hardened Linux server
in the central networking machine room running a modified web server whose
only function would be to redirect client requests to the new domain. The idea
was that even if the DDOS were able to overcome the forwarding server, the real
server was still protected.

Unfortunately, the largest flaw with this plan was that not only could the
forwarding server still be successfully attacked (though a separate machine built
to be attacked could theoretically handle attacks much more efficiently), but also
the UF upstream internet connection could conceivably become saturated as
well. Upstream saturation is an even more serious threat than the direct threat
against the specific web server because it impacts network services to the entire
campus.

While UFIRT was researching the mechanisms and behavior of the Netsky virus
on an internet security mailing list [26] Joe Stewart made the suggestion of using
a tarpit to trap the worm traffic.

09/20/04 18/38

The LaBrea Tarpit is the famous archeological find that had ensnared dozens of
dinosaurs in sticky tar, trapping the bones and preserving them until they were
dug up in modern times. Likewise, the LaBrea Tarpit [27] for networks traps
network worms and was developed by Tom Liston in response to the Code Red
worm. LaBrea tied together two clever ideas. The first was that it would
automatically respond to requests to unused IP address spaces. This was
accomplished by monitoring ARP requests on the local network and when an
ARP request went unanswered for a specified period of time, the host running
LaBrea would respond, temporarily assuming that IP address. While that idea
was not unheard of, the second was rather unusual, and was the most important
aspect. LaBrea would shrink the TCP window size and not send return ACK
(acknowledge) packets to the host communicating with it.

From a practical standpoint this means that hosts communicating with LaBrea
keep trying to communicate, fail, and keep trying again until the TCP connection
times out about 12 minutes later for Windows hosts. The Netsky DDOS code, for
example, spawns 50 threads that each attempt to connect to the target web
server, send a simple HTTP request (Sample 1: Sample SMTP transaction),
sleeps 250 milliseconds, and sends again. This allows one copy of the worm to
optimally attack about 200 times per second. That’s 144,000 attacks in 12
minutes. If the worm were to attack a tarpit, each thread would take 12 minutes
to time out, so there would only be 50 attacks in 12 minutes. Being able to
reduce the attack flow by nearly 3000 times might be the difference between
turning a crippling DDOS into a small traffic spike.

Stewart’s tarpit suggestion helped address the additional problem of saturating
the UF upstream connection, and it fit perfectly into the current plan. The
forwarding web server would be modified to not only forward the legitimate traffic,
but detect the worms and tarpit their DDOS attempts.

Given that the tarpit would not actually be a true tarpit (trapping everything that
connected to it), but would be selective, it was given the name Sticky, and the
concept called a stickypit.

The plan was approved by all involved parties, and UFIRT began to build the
stickypit.

Two possible ways to implement the stickypit were considered:

� Use the original Tarpit source code [27] and modify it to not use ARP
redirection. Additional code would have to be added for the initial
handling of an HTTP connection and worm request detection, and use
the existing source for tarpitting of subsequent connections using either
a tracking system of previous worm requests (implementing any fast
search system to check the list of previously detected hosts), or by
changing the sequence number in a manner that would enable

09/20/04 19/38

subsequent packets from worms to be tarpitted without having to
maintain a state table of which attacking hosts were infected.

� Use the IPTables Tarpit module which is an extension of the Linux
Netfilter kernel ‘packet mangling’ code [28]. IPTables has a simple and
easy to use interface, and would only require some relatively simple TCP
listening code to simulate an HTTP server, send the client a response,
and if the client request matched a worm request, generate an IPTables
command-line entry to tarpit the host on any subsequent requests.

Given the relatively short time frame, the second option was chosen. Mandrake
Linux [29] has the Tarpit module compiled into the distribution. After some
initial, unsuccessful, effort was put into compiling the modules on Redhat Linux,
Mandrake was eventually used as the easiest out of the box solution for the
tarpitting modules.

While the system was built and the code was being written to do the detection
and HTTP forwarding, simultaneous research was being done on the Netsky
variants (all three were out by this time). In VMWare testing (and even a ‘real’
system that could afford a rebuild), the worms all suffered a fatal crash whenever
the date on the system was set to the trigger date of the worm and the DDOS
code was activated. It seemed entirely possible that there would be no DDOS at
all.

UFIRT decided that regardless of lab testing, the stickypit development would
continue.

UFIRT coordinated with DNS administrators to redirect www.medinfo.ufl.edu, the
CNAME for medinfo.ufl.edu, to Sticky.

Containment
Sticky was prepared for the DDOS attack and the original server was moved to a
domain name that was not targeted by the worms. Unfortunately, like most real-
world scenarios, once the attack began, many changes and tweaks were
required to maintain performance of the stickypit.

While some small amount of attacks came in earlier (likely hosts with incorrect
time settings), the true DDOS began near the time predicted by the malware
analysis (Figure 3: Tarpit Bandwidth). Bandwidth to Sticky was very sporadic
however, and though there were still definite trends, there was very little steady
growth or decay, but rather many spikes and valleys. Further analysis of the lab
tests on Netsky, as well as monitoring of the traffic revealed the reason.

The X, Y, and Z variants of the Netsky worms do have a fatal flaw. There is an
error that occurs in the DDOS thread (Figure 4: Netsky Exception) of the worm;
however, it occurs at different times on different machines and under different

09/20/04 20/38

loads. It appears that an infected host under low load during the DDOS phase
will tend to exit out immediately. However, as load increases on an infected host,
it is able to complete more attacks before it crashes. This is likely why the
behavior did not show up in initial testing; since the infected lab hosts were only
being used to analyze the worms, their load was minimal. Sometimes the code
crashes before any attacks are sent to the target, sometimes many complete
attacks are sent before crashing, and sometimes the HTTP request becomes a
SYN flood [30].

The crashing behavior was both good news and bad news. The good news was
that Sticky would receive much less load than if the attack code worked correctly.
For the bad news, it meant that the server now had to deal with a variety of
behaviors instead of one well-defined behavior with one pre-programmed
response.

Specifically, SYN flooding is a DDOS attack by itself that can be quite effective at
exhausting resources as a target’s network stack must track each SYN packet
that is sent out until it times out and respond with a SYN ACK packet. Changes
were made to the syncookies option in sysctl [18] to help prevent Sticky from
wasting resources on SYN attacks.

Xinetd [31] was used as the socket listener on port 80 to direct open sessions to
the tard (Sample 3: Tard.c) executable. Some minor modifications were made to
allow xinetd to run as desired. The NOLIBWRAP option was used to force xinetd
to hand the process to tard instead of the normal http server.

Another change to xinetd was the backlog value was adjusted to prevent queued
connections from being dropped. The compiled value of backlog in xinetd is 7.
The backlog value [32] is passed to the listen function that listens on a socket. A
backlog value of seven means that if xinetd is handling a connection, the kernel
will only allow 7 connections to be queued before additional connections are
dropped. This resulted in unacceptable performance from the xinetd daemon in
conjunction with Tard. Xinetd was recompiled with a backlog value of 32000 to
prevent queued connections from being dropped.

The biggest change that was made to Sticky was with IPTables. The IPTables
kernel module was used instead of manually building such code into Tard for
several reasons. It made more sense for the kernel to handle the tarpitting as it
has more direct access to the network, had the highest execution priority on the
machine, and would therefore be able to process the incoming network traffic
more quickly than a non-kernel process. Additionally, it was trivial to have Tard
add hosts to the tarpit list via an external shell script. Thus, this was a much
faster solution.

Unfortunately, as the DDOS attack began to ramp up, it became apparent that
the stickypit could not handle more than 4000 or 5000 hosts on the tarpit list.

09/20/04 21/38

Temporary measures were developed to handle the problem. Watchdog scripts
were run to monitor the number of tarpitted hosts and flush the IPTables chains
when they reached a certain threshold. The threshold was adjusted up and
down as appropriate while the root cause was investigated. It became apparent
that the problem was due to the way IPTables processes incoming packets
against the list of rules. IPTables processing rules are called ‘Chains’ and for
good reason. They are just that—linear chains of tests to which a packet is
compared to determine how it will be processed. Every packet that received by
Sticky it had to be compared sequentially to each of the tarpit entry rules. Sticky
was quickly overloaded by 3000 rules times the number of packets entering per
second. Traffic peaked above 64,000 packets per second. There was no way to
handle so many transactions per second using a linear search of a rule set
thousands of entries long.

The problem stems from the inefficient way that IPTables parses its rules. A
linear search pattern is one of the slowest algorithms possible to search a list of
rules. While it makes sense for IPTables in its normal operation (in which it might
be doing more than one thing to an inbound packet), in the simple case where
there is an extremely long list of rules with only two results (tarpit or no tarpit), it’s
highly inefficient.

There were three solutions considered to deal with the problem. The first was to
rewrite the IPTables code itself so that it used a more efficient search method.
The second was to move the tarpit code out of the IPTables module and into the
Tard process as was originally considered. The third was to use sub-chains
within IPTables to presort the packets. The first two options were much more
labor intensive and difficult than the third, (though they are potentially better long-
term solutions) and since the attack was still in progress, the third option was
chosen.

The third option was a quicker and easier solution to allow IPTables to use more
intelligent sorting and rule comparison. 256 sub-chains were created, each
named from 0-255. Then 256 rules were created that automatically forwarded
incoming packets based on their first octet into the appropriate sub-chain. The
script that Tard called to add hosts to the tarpit (Sample 4: Stickypit scripts) was
updated accordingly so that it inserted rules into the appropriate sub-chain.

This resulted in a much faster processing speed. This modified search algorithm
was able to handle higher traffic load without requiring flushes of the IPTables
database as frequently.

Since hosts that were infected did not typically remain attackers for long,
periodically flushing the IPTables rules prevented Sticky from becoming
overloaded by IPTables processing, and still tarpitted most hosts for an effective
period of time. Some anomalous hosts were found that continued to attack, but
UFIRT was unable to track down the appropriate contacts for those infected

09/20/04 22/38

hosts to determine why they were not subject to the same faults that crashed
most infections.

Eradication
A very fortunate circumstance of the Netsky worm was that, not only did it have
its own built in accidental self-destruct mechanism, but the attack was only
designed to run for a short period of time. Eradication of the DDOS attack was
only a matter of out-waiting the attackers. Indeed, as the bandwidth graph
demonstrates (Figure 3: Tarpit Bandwidth), the bandwidth returned to pre-attack
levels at the expected time.

Future DDOS recipients may not be so lucky. If the attack were to continue for a
longer period of time, or if it was strong enough to flood UF’s upstream
connection, other action would be needed. One such possibility would be to
simply remove the www.medinfo.ufl.edu domain entirely. Without any DNS, the
worms would fail to resolve the domain and be unable to attack. As mentioned
previously, the full domain name was redundant and while there were some
users (specifically users who found links via search engines) who were using
www.medinfo.ufl.edu, the internal audience was easily able to update their
bookmarks to the new URL.

Since the targets were hard-coded, there was little the Netsky author could do to
update the attack as situations changed. Thus, any domain name or IP address
that is pre-programmed can either be removed, or blocked at the upstream
provider to reduce the impact of the denial of service on the target network,
though the targeted host may be unavailable to legitimate users.

The worst case scenario is when a malicious individual controls a network of
compromised machines through an active control channel and they can be
retargeted as necessary. It is possible that a modified stickypit could be used in
such a scenario depending on the situation.

Recovery
When the DDOS was confirmed to be complete, the original DNS configuration
with www.medinfo.ufl.edu as a CNAME to medinfo.ufl.edu was restored. Note
that since that time, the CNAME has been retired, and only the shorter URL is
used. Ironically, if the attack were to occur today, there is no layered DNS
structure of a CNAME to a separate name that could be used as it was last April
and May.

Since this incident did not involve any compromised machines on the UF
network, the recovery process was very short and simple. Extended members of
the UFIRT that had been called in specifically for their role in this specific incident
were retired. Sticky was removed from service, and incident handling returned to
a steady state.

09/20/04 23/38

Further analysis was conducted of the medinfo server to determine why it had
been targeted, but no conclusions could be drawn. No evidence of a
compromise or use in any other activity was found, but lack of evidence
unfortunately proves nothing. The reasoning behind the target selection for the
DDOS remains unclear to this day.

Lessons Learned
During this event, the first and second steps of incident handling were reversed
since identification that the event would occur was received before the actual
event, and preparation occurred in between identification and the event. UFIRT
was able to develop appropriate responses in time to mitigate the attack. The
experience with the Netsky DDOS adds another technique to UFIRT’s response
capabilities.

One lesson that was definitely learned was that no network can ever be
considered safe from DDOS attacks. Despite never finding any reasons why, UF
was still attacked by a fairly large scale denial of service attack.

It’s difficult to speculate what could be done to prevent an attack like this from
reoccurring since the actual cause of the initial attack is still unknown. There are,
however, improvements that could be made to the stickypit system that would
hopefully enable it to be a more robust system in future DDOS attack incidents.

Future directions for improvement include:

� Proxy detection: Post review of logs during the attack indicated that
some hosts were not being detected as worms because their HTTP
traffic was modified by Proxies in between the attacker and the
stickypit. More robust pattern matching could be added to Tard to
enable such detection.

� Per session sticking: The easiest way to avoid having to track a list of
IP addresses that need to be tarpitted would be to selectively tarpit a
specific TCP session immediately after the worm had made the unique
HTTP request. In that way there are no overhead issues associated
with trying to maintain state on all infected hosts. However, this
requires that the tarpit technology be moved inside of a Tard like
process instead of executed externally as the code does now.

� Use of stickypit technology in other situations. For example; combine
firewall technology with tarpit technology and only allow access to
legitimate web servers, while tarpitting HTTP requests to all other
hosts.

With the incident long finished, and after additional research for this paper, there
are still questions left to be answered:

09/20/04 24/38

� Why was the www.medinfo.ufl.edu server targeted in the first place?

� What causes the Netsky DDOS code to crash?

� How would the current stickypit design handle a repeat attack from a
fixed version of Netsky?

While this incident handler has no desire to find out the answer to some of these
questions on a professional level, from a personal perspective, it’s always fun to
guess.

09/20/04 25/38

References

1. Roberts, Paul. “Experts weigh Sasser-Netsky worm connection”. 03 May
2004. URL:
http://www.computerworld.com/securitytopics/security/virus/story/0,10801,
92871,00.html

2. Lemos, Robert. “Netsky authors possibly penned Sasser”. 03 May 2004.
URL: http://news.com.com/2100-7355_3-5204930.html

3. Sophos. “Suspected Sasser worm author caught; could trigger more
arrests, says Sophos”. 13 May 2004. URL:
http://www.sophos.com/virusinfo/articles/sasserarrest.html

4. Lyman, Jay. “Author of Sasser, Netsky Worms Indicted”. 09 September
2004. URL: http://www.technewsworld.com/story/36491.html

5. Wikipedia, the free encyclopedia. “Hacker”. URL:
http://en.wikipedia.org/wiki/Hacker

6. Lorek, Laura. “Russian Mafia Net Threat”. 16 July 2001. URL:
http://www.eweek.com/article2/0,3959,1237772,00.asp

7. Bullough, Oliver. “Police say Russian hackers are an increasing threat”.
28 July 2004. URL:
http://www.usatoday.com/tech/news/internetprivacy/2004-07-28-russian-
hackers_x.htm

8. Verton, Dan. “Organized Crime Invades Cyberspace”. 30 August 2004.
URL:
http://www.computerworld.com/securitytopics/security/story/0,10801,9550
1,00.html

9. Windows XP Service Pack 2. URL:
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/winxpsp
2.mspx

10. Starr Andersen, Vincent Abella. Changes to Functionality in Microsoft
Windows XP Service Pack 2. URL:
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2chng
s.mspx

11. Postel, Jonathan B. “RFC 821”. August 1982. URL:
http://www.ietf.org/rfc/rfc0821.txt?number=821

12. Klensin, et al. “RFC 2821”. April 2001. URL:
http://www.ietf.org/rfc/rfc2821.txt?number=2821

13. Freed, et al. “RFC 2045”. November 1996. URL:
http://www.ietf.org/rfc/rfc2045.txt?number=2045

14. Levinson, et al. “RFC 2112”. March 1997. URL:
http://www.ietf.org/rfc/rfc2112.txt?number=2112

09/20/04 26/38

15. Fielding, et al. “RFC 2616”. June 1999. URL:
http://www.ietf.org/rfc/rfc2616.txt?number=2616

16. Gudmundsson, et al. “RFC 3658”. December 2003. URL:
http://www.ietf.org/rfc/rfc3658.txt?number=3658

17. VirusAll.com. Netsky.X Screenshot. URL:
http://virusall.com/images/worm_Netsky_x_img1.gif

18. Burdach, Mariusz. “Hardening the TCP/IP stack to SYN attacks”. 10
September 2003. URL: http://www.securityfocus.com/infocus/1729

19. Lemos, Robert. “Web worm targets White House”. July 19, 2001. URL:
http://news.com.com/2100-1001-270272.html

20. Smith, Philip and Barry Greene. “Remote Triggering Black Hole Filtering”.
Draft 0.2. 02 August 2002. URL:
http://www.netsys.com/library/papers/Remote_Triggered_Black_Hole_Filt
ering-02.pdf

21. Chromiak, Chris. “Mydoom in the Case of the Unsuspecting vendor”. 14
June 2004. URL:
http://www.giac.org/practical/GCIH/Chris_Chromiak_GCIH.pdf

22. Gebhart, Glenn. “Worm Propagation and Countermeasures”. 02 February
2004. URL: http://www.sans.org/rr/papers/36/1410.pdf

23. Gadsden, Richard. “Mass-Mailing Worms: Prevention, Detection and
Response (A Case Study)”. 08 August 2003. URL:
http://www.sans.org/rr/papers/36/1148.pdf

24. SANS and Ed Skoudis. “Incident Handling Step-by-Step and Computer
Crime Investigation”. SANS Institute Track 4 –Hacker Techniques,
Exploits & Incident Handling. April 2004 (2004).

25. Crocker, et al. “RFC 2142”. May 1997. URL:
http://www.ietf.org/rfc/rfc2142.txt?number=2142

26. The Trojan Horses Research Mailing List. URL: http://ecompute.org/th-
list/index.html

27. Labrea – SourceForge. URL: http://labrea.sourceforge.net/

28. IPTables Tarpit Module. URL: http://cvs.netfilter.org/patch-o-matic-
ng/TARPIT/

29. Mandrakesoft. URL: http://www.mandrakesoft.com/

30. CERT. “TCP SYN Flooding and IP Spoofing Attacks”. 19 September 1996.
URL: http://www.cert.org/advisories/CA-1996-21.html

31. Xinetd. URL: http://www.xinetd.org/

32. BSD Man Page. “listen - listen for connections on a socket”. 23 July 1993.
URL: http://www.freebsd.org/cgi/man.cgi?query=listen

09/20/04 27/38

Appendix A – Figures, Tables and charts

Table 1: Variants
Variant Date Notable/New Characteristics References

A 02/06/04 Random email payload, copied to shared
directories, may be in a zip file, removes
Mydoom and Mimail registry entries

M, S, T, P, F

B 02/18/04 Similar to B M, S, T, P, F
C 02/25/04 Different copies packed different with

Petite, Aspack, or UPX, beeps
M, S, T, P, F

D 02/25/04 Announces the author(s) as the Skynet.cz
AntiHacker Crew, PE packed

M, S, T, P, F

E 03/01/04 Similar to E M, S, T, P, F
F 03/03/04 Embedded text calls Bagle a loser, tries to

remove Bagle registry entries
M, S, T, P, F

G 03/04/04 Embedded text suggests to Bagle and
Mydoom authors a meeting in person.
Location appears to be encrypted.
Removes registry entries of Mydoom,
Mimail, Neysky(a,b), Nachi, and Bagle.

M, S, T, P, F

H 03/05/04 Embedded text: “Skynet AntiVirus -
Mydoom and Bagle are children”

M, S, T, P, F

I 03/08/04 Similar to H M, S, T, P, F
J 03/08/04 Packed with TeLock M, S, T, P, F
K 03/08/04 Author claims this is the last variant in

hidden text. Mar 13th popup displays
“SkyNet has full control of your system
now”, and Mar 16th popup displays “Please
remove the file avpguard from your
Windows-Directory and do not open
attachments anymore. It can be a virus like
bagle and mydoom or similar malicious
code. This is the SkyNet-Antivirus!”
Variant occasionally uses password
protected zips; a technique stolen from
bagle. Additionally, a backdoor opens up
on port 26 on the Mar16th on infected
machines. Authors promise source will be
released soon.

M, S, T, P, F

L 03/10/04 Back to UPX packing. Appears to be a
much stripped down version (T). Email
texts and addresses are much less varied,
and the mutex used to prevent multiple
infections is new to the family.

M, S, T, P, F

09/20/04 28/38

M 03/11/04 Similar to L M, S, T, P, F
N 03/17/04 New author claims to have ownership of

the source code, calling itself NetDy.
Begins deleting other registry entries again,
which L and M did not.

M, S, T, P, F

O 03/17/04 Similar to N M, S, T, P, F
P 03/21/04 Another new style of variant. Spreads via

P2P again, is FSG packed, exploits
Outlook preview vulnerability to allow it to
be executed in unpatched Outlook
environments when viewed, without
requiring the attachment actually be
opened. Additionally, this variant makes
use of a dropper that drops an UPX packed
dll which contains the worm payload.

M, S, T, P, F

Q 03/29/04 First variant with an attack payload. Similar
DLL structure to P. Ddos against the
following websites:
www.cracks.st
www.cracks.am
www.emule-project.net
www.kazaa.com
www.edonkey2000.com

M, S, T, P, F

R 03/31/04 Similar to Q, removes even more registry
entries (SDBot is added), and attacks the
following hosts:
www.keygen.us
www.kazaa.com
www.emule-project.net
www.cracks.am
www.emule.de

M, S, T, P, F

S 04/04/04 Stripped down from previous versions;
does not spread via P2P anymore, and
does not uninstall other worms. Has a
backdoor on port 6789, and uses two
processes to make shutting it down difficult.
The irony is of course that the original
Netsky team derided the evils of bagle
because it had backdoors. Now sites
attacked sites include:
www.emule.de
www.cracks.am
www.freemule.net
www.kazaa.com
www.keygen.us

M, S, T, P, F

T 04/06/04 Similar to S M, S, T, P, F

09/20/04 29/38

U 04/08/04 Similar to S (minor packing differences) M, S, T, P, F
V 04/14/04 Backdoor ports on 5556 (ftp) and 5557

(http). The worm attempts to exploit IE
enabled mail clients and then use the
previously opened ftp and http servers to
transfer itself. Same DDOS recipients.

M, S, T, P, F

W 04/16/04 Minor changes; occasionally emailed a
specific AOL address.

M, S, T, P, F

X 04/20/04 M, S, T, P, F
Y 04/20/04 M, S, T, P, F
Z 04/21/04

See separate analysis

M, S, T, P, F
AA 04/27/04 No new behaviors; fake error message; no

backdoor or payload.
M, S, T, P, F

AB 04/28/04 Removes Bagle M, S, T, P, F
AC 05/02/04 Claims credit for Sasser in comments and

shows sample source as proof
M, S, T, P, F

AD M, S, T, P, F
AE M, S, T, P, F
AF

 There are discrepancies between AV
vendors on details of these variants, even
whether they exist. M, S, T, P, F

09/20/04 30/38

Figure 1: Timeline

09/20/04 31/38

Figure 2: Network Topology

��������

��������

�	
	���
��

������������������

IDC

�������������������

��������������

����������

����������

	����

��
����

�
���

09/20/04 32/38

Figure 3: Tarpit Bandwidth

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

0 24 48 72 96 120 144 168 192 216 240

Hours from April 27, 00:00 EST

A
vg

 K
b

/s

09/20/04 33/38

Figure 4: Netsky Exception

09/20/04 34/38

Appendix B – Code and Data samples

Sample 1: Sample SMTP transaction
220 l ocal host . my. domai n ESMTP Sendmai l 8. 12. 11/ 8. 12. 11; Fr i , 30 Apr 2004 21: 59: 22 - 0400
(EDT)
EHLO yahoo. com
250- l ocal host . my. domai n Hel l o yahoo. com [192. 168. 42. 128] , pl eased t o meet you
250- ENHANCEDSTATUSCODES
250- PI PELI NI NG
250- 8BI TMI ME
250- SI ZE
250- DSN
250- ETRN
250- DELI VERBY
250 HELP
MAI L FROM: <hukanmi kl oi uo@yahoo. com>
250 2. 1. 0 <hukanmi kl oi uo@yahoo. com>. . . Sender ok
RCPT TO: <hukanmi kl oi uo@yahoo. com>
250 2. 1. 5 <hukanmi kl oi uo@yahoo. com>. . . Reci pi ent ok
DATA
354 Ent er mai l , end wi t h " . " on a l i ne by i t sel f
Fr om: hukanmi kl oi uo@yahoo. com
To: hukanmi kl oi uo@yahoo. com
Subj ect : Del i ver y f ai l ur e not i ce (I D- 000053C6)
Dat e: Fr i , 30 Apr 2004 21: 59: 23 - 0400
MI ME- Ver si on: 1. 0
Cont ent - Type: mul t i par t / mi xed;
. boundar y=" - - - - =_Next Par t _000_0004_0000673B. 000076EB"
X- Pr i or i t y: 3
X- MSMai l - Pr i or i t y: Nor mal

Thi s i s a mul t i - par t message i n MI ME f or mat .

- - - - - - =_Next Par t _000_0004_0000673B. 000076EB
Cont ent - Type: t ext / pl ai n;
. char set =" Wi ndows- 1252"
Cont ent - Tr ansf er - Encodi ng: 7bi t

- - - Mai l Par t Del i ver ed - - -
220 Wel come t o [yahoo. com]
Mai l t ype: mul t i par t / r el at ed
- - - t ext / ht ml RFC 2504
MX [Mai l Exchanger] mx. mt 2. kl . yahoo. com
Exi m St at us OK.

New message i s avai l abl e.

- - - - - - =_Next Par t _000_0004_0000673B. 000076EB
Cont ent - Type: appl i cat i on/ oct et - st r eam;
. name=" www. yahoo. com. hukanmi kl oi uo. sessi on- 000053C6. com"
Cont ent - Tr ansf er - Encodi ng: base64
Cont ent - Di sposi t i on: at t achment ;
. f i l ename=" www. yahoo. com. hukanmi kl oi uo. sessi on- 000053C6. com"

TVqQAAMAAAAEAAAA/ / 8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAqAAAAERuqUgAD8cbAA/ HGwAPxxuDE8kbDA/ HG+gQzRsZD8cbgweaGwI PxxsAD8cb
Aw/ HGwAPxht cD8cbYhDUGwkPxxvoEMwbBQ/ HG1JpY2gAD8cbAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAUEUAAEwBBADt J4RAAAAAAAAAAADgAA8BCwEGAABMAAAAAhgAAAAAAG4+AAAAEAAA
AGAAAAAAQAAAEAAAAAI AAAQAAAAAAAAABAAAAAAAAAAAoBgAAAQAAAAAAAACAAAAAAAQAAAQ
 <MAJORI TY OF DATA CUT HERE>
AA
AAA=

- - - - - - =_Next Par t _000_0004_0000673B. 000076EB- -

.
250 2. 0. 0 i 8J1xMOS000251 Message accept ed f or del i ver y
QUI T
221 2. 0. 0 l ocal host . my. domai n cl osi ng connect i on

09/20/04 35/38

Sample 2: Netsky HTTP DDOS Requests

HEX Dump ASCI I DUMP
00 0c 29 a0 e4 d7 00 0c 29 96 b5 9f 08 00 45 00 . .)) E.
00 4e 08 84 40 00 80 06 1b d4 c0 a8 2a 80 c0 a8 . N. . @. * . . .
2a 81 08 f d 00 50 d9 d6 48 f 4 aa f f da 2f 50 18 * P. . H. . . . / P.
44 70 73 e9 00 00 47 45 54 20 2f 20 48 54 54 50 Dps. . . GET / HTTP
2f 31 2e 31 0d 0a 48 6f 73 74 3a 20 77 77 77 2e / 1. 1. . Host : www.
65 64 75 63 61 2e 63 68 0d 0a 0d 0a educa. ch. . . .

00 0c 29 a0 e4 d7 00 0c 29 96 b5 9f 08 00 45 00 . .)) E.
00 55 08 80 40 00 80 06 1b d1 c0 a8 2a 80 c0 a8 . U. . @. * . . .
2a 81 08 f c 00 50 20 9d 1e 32 ad 08 47 2d 50 18 * P . . 2. . G- P.
44 70 22 d4 00 00 47 45 54 20 2f 20 48 54 54 50 Dp" . . . GET / HTTP
2f 31 2e 31 0d 0a 48 6f 73 74 3a 20 77 77 77 2e / 1. 1. . Host : www.
6d 65 64 69 6e 66 6f 2e 75 66 6c 2e 65 64 75 0d medi nf o. uf l . edu.
0a 0d 0a . . .

Sample 3: Tard.c
/ *
* * Tar pi t daemon. . . by Chuck Logan
* /

#i ncl ude <st dl i b. h>
#i ncl ude <st di o. h>
#i ncl ude <st r i ngs. h>
#i ncl ude <er r no. h>
#i ncl ude <uni st d. h>
#i ncl ude <sysl og. h>
#i ncl ude <sys/ socket . h>
#i ncl ude <net i net / i n. h>
#i ncl ude <ar pa/ i net . h>

/ * var i ous st at i c st r i ngs * /

const char vi r us_l i ne1[] = " GET / HTTP/ 1. 1" ;
const char vi r us_l i ne2[] = " Host : www. medi nf o. uf l . edu" ;

const char r edi r ect [] =
 " HTTP/ 1. 1 302 Tempor ar y Redi r ect \ r \ n"
 " Locat i on: ht t p: / / medi nf o. uf l . edu\ r \ n"
 " Connect i on: c l ose\ r \ n"
 " Ser ver : Daemon/ 1. 0\ r \ n\ r \ n" ;

const char t ar pi t _cmd[] = " / usr / l ocal / sbi n/ t ar pi t " ;
#def i ne TARPI T_ARGC 2
char t ar pi t _ar gv0[] = " t ar pi t " ;
/ * ar gv1 i s var i abl e I P * /
#def i ne t ar pi t _ar gv2l ast NULL

/ * i nput l i ne buf f er f or web r equest * /

#def i ne MAXLI NE 512
i nt l i nel en = 0;
char l i nebuf [MAXLI NE+1] ;

/ *
* * l og an er r or message and exi t
* /
voi d l og_er r or _di e (const char * mess)
{
 / * f pr i nt f (st der r , " t ar d: %s\ n" , mess) ; / * DEBUG * /
 sysl og (LOG_ERR, " %s" , mess) ;
 exi t (1) ;
}

/ *
* * l og an er r or message pl us er r no val ue and exi t
* /
voi d l og_er r no_di e (const char * mess)
{
 / * f pr i nt f (st der r , " t ar d: %s: %s\ n" , mess, st r er r or (er r no)) ; / * DEBUG * /
 sysl og (LOG_ERR, " %s: %m" , mess) ;
 exi t (1) ;
}

09/20/04 36/38

/ *
* * r ead next l i ne f r om st di n i nt o st at i c buf f er ; wi l l accept CR, LF, or
* * CRLF as l i ne del i mi t er ; i f l i ne t oo l ong ext r a par t di scar ded; usi ng
* * C st dl i b because i t ' s al r eady opt i mi zed f or speed and I don' t need t o
* * do anyt hi ng f ancy.
* /
r ead_l i ne ()
{
 st at i c i nt eat _l f = 0; / * t r ue means: i f next char i s LF, i t bel ongs
 t o pr ev l i ne, di scar d i t * /
 i nt next char ; / * i nput l ookahead * /

 l i nel en = 0;
 next char = get char () ; / * f i r st char * /

 i f (eat _l f && next char == ' \ n') {
 / * t hi s i s LF f r om pr ev l i ne, di scar d i t * /
 next char = get char () ;
 }

 whi l e (next char ! = EOF && next char ! = ' \ r ' && next char ! = ' \ n') {
 / * end of l i ne not f ound * /
 i f (l i nel en < MAXLI NE) {
 / * add t o buf f er onl y i f not f ul l * /
 l i nebuf [l i nel en++] = next char ;
 }
 next char = get char () ; / * next char * /
 }
 l i nebuf [l i nel en] = ' \ 0' ; / * nul l - t er m * /

 / * i f CR or LF her e, di scar d j ust by doi ng not hi ng; i f CR, set f l ag
 t hat LF pr obabl y f ol l ows * /

 eat _l f = next char == ' \ r ' ;
}

/ *
* * mai n pr ogr am; no command l i ne ar gs
* /
i nt mai n (i nt ar gc, char * ar gv[])
{
 i nt v i r us_f ound = 1;
 st r uct sockaddr _i n peer _addr ;
 sockl en_t peer _addr _l en = si zeof (peer _addr) ;
 / * f or get peer name cal l * /
 char * peer _addr _st r ; / * f or i net _nt oa cal l * /
 char * chi l d_ar gv[TARPI T_ARGC+1] ;
 / * f or execv cal l * /

 / * on ent r y st di n/ st dout / st der r shoul d r ef er t o open TCP socket * /

 c l ose (2) ; / * c l ose st der r r i ght away t o pr event
 i nf o l eaks * /
 openl og (" t ar d" , LOG_CONS | LOG_PI D, LOG_USER) ;
 / * open sysl og * /

 / * * * * * * * * * * r ead and t est HTTP r equest * * * * * * * * * * /

 / * i f GET l i ne mat ches and no header s, or i f GET mat ches, Host :
 mat ches, and no ot her header s, i t ' s t he vi r us * /

 r ead_l i ne() ; / * get r equest l i ne (GET/ HEAD) * /
 i f (l i nel en == 0) { / * di scar d 0. . 1 l eadi ng bl ank l i nes * /
 r ead_l i ne() ;
 }

 i f (0 ! = st r cmp (l i nebuf , v i r us_l i ne1)) {
 v i r us_f ound = 0; / * no mat ch, not v i r us * /
 }

 i f (l i nel en ! = 0) { / * r ead f i r st header l i ne * /
 r ead_l i ne() ;
 }

 i f (l i nel en ! = 0 && 0 ! = st r cmp (l i nebuf , v i r us_l i ne2)) {
 v i r us_f ound = 0; / * pr esent & no mat ch, not v i r us * /
 }

 i f (l i nel en ! = 0) { / * t r y second header l i ne * /
 r ead_l i ne() ;
 }

09/20/04 37/38

 i f (l i nel en ! = 0) {
 v i r us_f ound = 0; / * t her e i s a second l i ne, not v i r us * /
 }

 whi l e (l i nel en ! = 0) { / * r ead header l i nes unt i l bl ank * /
 r ead_l i ne() ;
 }

 / * bl ank l i ne mar ks end of header ; i f t her e' s any body, we' r e goi ng t o
 c l ose wi t hout r eadi ng i t * /

 / * * * * * * * * * * send br owser r edi r ect * * * * * * * * * * /

 wr i t e (1, r edi r ect , s i zeof (r edi r ect) - 1) ;
 / * omi t l ast byt e of st r i ng whi ch i s
 \ 0; i gnor e er r or s; use l ow- l evel
 so I don' t wor r y about f l ushi ng * /

 / * * * * * * * * * * get peer I P * * * * * * * * * * /

 i f (get peer name (0, (st r uct sockaddr *) &peer _addr , &peer _addr _l en)) {
 l og_er r no_di e (" get peer name f ai l ed") ;
 }

 i f (peer _addr . si n_f ami l y ! = AF_I NET) {
 l og_er r or _di e (" get peer name er r or : socket f ami l y i s not I P") ;
 }

 peer _addr _st r = i net _nt oa (peer _addr . si n_addr) ;

 / * * * * * * * * * * c l ose socket * * * * * * * * * * /

 c l ose (1) ; / * c l ose out put f i r st * /
 c l ose (0) ; / * c l ose i nput * /

 / * * * * * * * * * * handl e vi r us * * * * * * * * * * /

 i f (v i r us_f ound) {

 sysl og (LOG_NOTI CE, " Addi ng %s t o t ar pi t " , peer _addr _st r) ;

 / * exec pr ogr am t o put v i r us i n t ar pi t * /

 chi l d_ar gv[0] = t ar pi t _ar gv0;
 chi l d_ar gv[1] = peer _addr _st r ;
 chi l d_ar gv[2] = t ar pi t _ar gv2l ast ;
 execv (t ar pi t _cmd, chi l d_ar gv) ;

 l og_er r no_di e (" Exec t ar pi t f ai l ed") ;

 } el se {
 sysl og (LOG_I NFO, " Redi r ect ed %s" , peer _addr _st r) ;
 }

 r et ur n 0;
}

09/20/04 38/38

Sample 4: Stickypit scripts
#! / bi n/ sh
#/ usr / l ocal / sbi n/ t ar pi t
Si mpl e scr i pt t o t ar pi t i n t he appr opr i at e subchai n
Cal l ed by t ar d

OCTET=` echo $1| awk - F. ' { pr i nt $1} ' `
/ sbi n/ i pt abl es - I CHAI N$OCTET 1 - j TARPI T - p t cp - m t cp - s $1

#! / bi n/ sh
#/ usr / l ocal / sbi n/ l oad- chai ns

Load t he 256 i pt abl e sub- chai ns f or 2- l evel scheme

COUNT=0

whi l e [$COUNT - l t 256] ; do
 whi l e t r ue ; do
 i pt abl es - A CHAI N$COUNT - j ACCEPT 2>&1 | gr ep ' [a- zA- Z0- 9] '
 i f [$? - ne 0] ; t hen
 br eak;
 f i
 echo i pt abl es - A CHAI N$COUNT - j ACCEPT f ai l ed, r et r y i ng. . .
 done
 whi l e t r ue ; do
 i pt abl es - A I NPUT - j CHAI N$COUNT - p t cp - m t cp - s ${ COUNT} . 0. 0. 0/ 8 \
 2>&1 | gr ep ' [a- zA- Z0- 9] '
 i f [$? - ne 0] ; t hen
 br eak
 f i
 echo i pt abl es - A I NPUT - j CHAI N$COUNT r ul e. . . f ai l ed, r et r y i ng. . .
 done
 COUNT=$(($COUNT + 1))
Done

